on the girth of the annihilating-ideal graph of a commutative ring

Authors

m ahrari

sh. a. safari sabet

b amini

abstract

the annihilating-ideal graph of a commutative ring $r$ is denoted by $ag(r)$, whose vertices are all nonzero ideals of $r$ with nonzero annihilators and two distinct vertices $i$ and $j$ are adjacent if and only if $ij=0$. in this article, we completely characterize rings $r$ when $gr(ag(r))neq 3$.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

On the girth of the annihilating-ideal graph of a commutative ring

The annihilating-ideal graph of a commutative ring $R$ is denoted by $AG(R)$, whose vertices are all nonzero ideals of $R$ with nonzero annihilators and two distinct vertices $I$ and $J$ are adjacent if and only if $IJ=0$. In this article, we completely characterize rings $R$ when $gr(AG(R))neq 3$.

full text

The sum-annihilating essential ideal graph of a commutative ring

Let $R$ be a commutative ring with identity. An ideal $I$ of a ring $R$is called an annihilating ideal if there exists $rin Rsetminus {0}$ such that $Ir=(0)$ and an ideal $I$ of$R$ is called an essential ideal if $I$ has non-zero intersectionwith every other non-zero ideal of $R$. Thesum-annihilating essential ideal graph of $R$, denoted by $mathcal{AE}_R$, isa graph whose vertex set is the set...

full text

the sum-annihilating essential ideal graph of a commutative ring

let $r$ be a commutative ring with identity. an ideal $i$ of a ring $r$is called an annihilating ideal if there exists $rin rsetminus {0}$ such that $ir=(0)$ and an ideal $i$ of$r$ is called an essential ideal if $i$ has non-zero intersectionwith every other non-zero ideal of $r$. thesum-annihilating essential ideal graph of $r$, denoted by $mathcal{ae}_r$, isa graph whose vertex set is the set...

full text

The annihilator-inclusion Ideal graph of a commutative ring

Let R be a commutative ring with non-zero identity. The annihilator-inclusion ideal graph of R , denoted by ξR, is a graph whose vertex set is the of allnon-zero proper ideals of $R$ and two distinct vertices $I$ and $J$ are adjacentif and only if either Ann(I) ⊆ J or Ann(J) ⊆ I. In this paper, we investigate the basicproperties of the graph ξR. In particular, we showthat ξR is a connected grap...

full text

The sum-annihilating essential ideal graph of a commutative ring

Let R be a commutative ring with identity. An ideal I of a ring R is called an annihilating ideal if there exists r ∈ R \ {0} such that Ir = (0) and an ideal I of R is called an essential ideal if I has non-zero intersection with every other non-zero ideal of R. The sum-annihilating essential ideal graph of R, denoted by AER, is a graph whose vertex set is the set of all non-zero annihilating i...

full text

A note on a graph related to the comaximal ideal graph of a commutative ring

  ‎The rings considered in this article are commutative with identity which admit at least two maximal ideals‎.  ‎This article is inspired by the work done on the comaximal ideal graph of a commutative ring‎. ‎Let R be a ring‎.  ‎We associate an undirected graph to R denoted by mathcal{G}(R)‎,  ‎whose vertex set is the set of all proper ideals I of R such that Inotsubseteq J(R)‎, ‎where J(R) is...

full text

My Resources

Save resource for easier access later


Journal title:
journal of linear and topological algebra (jlta)

Publisher: central tehran branch. iau

ISSN 2252-0201

volume 04

issue 03 2015

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023